Abstract

Two distinct binary blended concrete mixes were prepared for the study. The first mix involved a cement replacement of 50% slag, denoted as SL. The second mix incorporated a cement replacement of 20% fly ash, referred to as FA. No chlorides were added during the preparation of these concrete specimens. To accelerate chloride transport, electromigration was employed by placing specimens with varying reservoir lengths (ranging from 2.5 cm to 17.5 cm) on their top surfaces. These reservoirs were subsequently filled with a 10% NaCl solution. In this paper, corrosion propagation was monitored over a period of approximately 650 days using electrochemical measurements such as open circuit potential, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS). The evolution of rebar potential, polarization resistance, solution resistance, and corrosion current were analyzed to understand the corrosion behavior. This paper focuses on how the length of the solution reservoirs influences the corrosion-related parameters such as polarization resistance, solution resistance, rebar potential, and corrosion current. During the monitored propagation period, the corrosion current values (last 7 sets of readings) exhibited higher magnitudes for the embedded rebars in specimens made with SL mix in comparison to those made with FA mix. Corrosion current measurements likewise showed an increasing trend as the reservoir lengths increased. None of the specimens had any visible cracks or corroded products that could reach the concrete surface throughout the monitored period. The experimental results provide insights into the corrosion mechanisms and the effectiveness of accelerated corrosion techniques in simulating real-life conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call