Abstract

Samples with two different binary blended concrete mixes were prepared, one containing cement replacement of 50% slag (referred here as SL mix) and the other containing cement replacement of 20% fly ash (termed here as FA mix). The water to cementitious ratio used to produce concrete specimens was 0.41. On the top surface of each specimen, various reservoir lengths that ranged from 2.5 cm to 17.5 cm were fitted, and these reservoirs were filled with a 10% NaCl solution. Electromigration was used to accelerate the transport of chlorides, with an applied potential of 9 V at first, and subsequently reduced to 3 V after about a week. The electromigration was applied for a short period (few weeks to a couple of months). For a period of about 1100 days, the corrosion related parameters such as concrete solution resistance, rebar potential, and corrosion current were monitored via the rebar potential measurements, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements, the latter used only to obtain the solution resistance. The corrosion current values determined through experimental observations were then converted to mass loss using Faraday’s law. The readings of corrosion current values (last 7 sets of readings) as well as the calculated mass loss values were found to be larger for the rebars embedded in specimens prepared with SL mix, followed by rebars embedded in specimens prepared with FA mix. Corrosion current and calculated mass loss values in general tended to increase with increasing solution reservoir lengths. No cracks or corrosion products that reached the surface of the concrete were observed on the specimens for the duration of the reported monitored propagation period. This study offers a framework for future studies on accelerated steel corrosion in concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call