Abstract

Deterioration corrosion occurs between the external surface of oil pipelines and aerobic oil-degrading microorganisms in oil fields. Microorganisms with aerobic oil pollution remediation capabilities may catalyze more serious anaerobic microbial corrosion due to the carbon source supply. In this study, Acinetobacter soli strains were isolated from oil-contaminated environments, and their role in the deterioration corrosion behavior of X70 steel in an oil-water environment was investigated using the EDS multipoint scanning method. The presence of oil controls the deposition of carbon and phosphorus and diffusion of oxygen, leading to significant adhesion attraction and initial growth inhibition of biofilm on the metal surface. A. soli facilitates oxygen transfer and iron ion dissolution, thereby accelerating the pitting corrosion of X70 steel. This corrosion of the X70 steel, in turn, further accelerates the microbial degradation of oil, inhibiting the appearance of calcareous scale in the later stage of corrosion. The corrosion of X70 steel is influenced by microbial degradation, and the specific corrosion behaviors are related to the activity of A. soli in the petroleum environment. This study sheds light on the corrosion mechanisms of X70 steel by A. soli at different stages, providing insights into the interactions between microorganisms, oil pollution, and metal corrosion in oil fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call