Abstract

Operational stability of electrolytes is a persistent impediment in building redox flow battery technology. Stabilizing multiple vanadium oxidation states in aqueous solution is a primary challenge in designing reliable large-scale vanadium redox flow batteries (VRBs). Here we demonstrate that rationally selected ionic additives can stabilize the aqua vanadium solvate structures through preferential bonding and molecular interactions despite their relatively low concentrations (≤0.1 M). The competing cations (NH4+ and Mg2+) and bonding anions (SO42−, PO43−, and Cl−) introduced by bi-additives are used to tune the vanadium solvation chemistry and design an optimal electrolyte for VRB technology. Such molecular engineering of VRB electrolytes results in enhancement of the operational temperature window by 180% and energy density by more than 30% relative to traditional electrolytes. This work demonstrates that tunable solvation chemistry is a promising pathway to engineer an optimal electrolyte for targeted electrochemical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.