Abstract
Scanning tunneling microscopy studies reveal that trace amounts of adsorbed S below a critical coverage on the order of 10 mML have little effect on the coarsening and decay of monolayer Ag adatom islands on Ag(111) at 300 K. In contrast, above this critical coverage, decay is greatly accelerated. This critical value appears to be determined by whether all S can be accommodated at step edges. Accelerated coarsening derives from the feature that the excess S (above that incorporated at steps) produces significant populations on the terraces of metal-sulfur complexes, which are stabilized by strong Ag-S bonding. These include AgS(2), Ag(2)S(2), Ag(2)S(3), and Ag(3)S(3). Such complexes are sufficiently populous and mobile that they can potentially lead to greatly enhanced metal mass transport across the surface. This picture is supported by density functional theory analysis of the relevant energetics, as well as by reaction-diffusion equation modeling to assess the mechanism and degree of enhanced coarsening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.