Abstract
Notch signaling plays important roles in maintaining intestinal epithelial homeostasis. When Notch signaling is blocked, proliferation ceases and epithelial cells become secretory. The purpose of the present study was to evaluate the role of Notch signaling pathway following intestinal ischemia-reperfusion (IR) injury in a rat model. Male Sprague-Dawley rats were randomly divided into four experimental groups: Sham-24 and Sham-48 rats underwent laparotomy and were killed 24 or 48h later, respectively; IR-24 and IR-48 rats underwent occlusion of SMA and portal vein for 30min followed by 24 or 48h of reperfusion, respectively. Enterocyte proliferation and enterocyte apoptosis were determined at killing. Notch-related gene and protein expression were determined using Real Time PCR, Western blotting and immunohistochemistry 48h followed IR. IR-48 rats demonstrated significantly increased rates of cell proliferation and increased cell apoptosis in both jejunum and ileum compared to Sham rats. IR-48 rats exhibited a significant decrease in Notch-1 protein expression (Western blot) that was coincided with a significant decrease in the number of Notch-1 positive cells (immunohistochemistry) in jejunum (35% decrease, p < 0.05) and ileum (twofold decrease, p < 0.05) as well as Hes-1 positive cells in jejunum (28% decrease, p < 0.05) and ileum (31% decrease, p < 0.05) compared to Sham-48 rats. Forty-eight hours following intestinal IR in rats, accelerated cell turnover was associated by inhibited Notch signaling pathway. Intestinal stem cells differentiation toward secretory progenitors rather than differentiation toward absorptive cells is important at this phase of intestinal recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.