Abstract
Growing evidence suggests that ozone (O3) protects the host against pathological conditions mediated by reactive oxygen species by increasing the activity of antioxidant enzymes. The purpose of the present study was to examine the effect of O3 on intestinal recovery and enterocyte turnover after intestinal ischemia-reperfusion (IR) injury in rats. Male Sprague-Dawley rats were divided into four experimental groups: (1) sham rats underwent laparotomy; (2) sham-O3 rats underwent laparotomy and were treated with an ozone/oxygen mixture intraperitoneally and intraluminally (50 %/50 %); (3) IR rats underwent occlusion of both superior mesenteric artery and portal vein for 20 min followed by 48 h of reperfusion, and (4) IR-O3 rats underwent IR and were treated with an ozone/oxygen mixture similar to group 2. Intestinal structural changes, Park's injury score, enterocyte proliferation and enterocyte apoptosis were determined 48 h following IR. Western blot was used to determine ERK and Bax protein levels. A non-parametric Kruskal-Wallis ANOVA test was used for statistical analysis with p < 0.05 considered statistically significant. Treatment of IR rats with O3 resulted in a significant increase in mucosal weight in jejunum (70 %) and ileum (32 %), mucosal DNA (twofold increase) and protein (35 %) in ileum, villus height and crypt depth in jejunum (61 and 16 %, correspondingly) and ileum (31 and 43 %, correspondingly) compared to IR animals. IR-O3 rats also had a significantly lower intestinal injury score as well as a lower apoptotic index in jejunum and ileum compared and IR animals. A significant increase in cell proliferation rates in IR-O3 animals was accompanied by increased levels of p-ERK protein. Treatment with ozone prevents intestinal mucosal damage, stimulates cell proliferation and inhibits programmed cell death following intestinal IR in a rat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.