Abstract

Alternative cements and production routes are necessary to offset the considerable global CO2 emissions of Portland cement production. The combination of alkali-activation and mechanochemical milling in a CO2 rich atmosphere is a promising green direction for synthesizing cementitious material as it upcycles hazardous material (slag) while capturing wt% of CO2 during synthesis. We investigate the resulting structural transformations incurred during synthesis and hydration using a suite of characterization techniques including solid-state 27Al, 29Si, and 13C NMR. The local aluminosilicate network structure of the processed clinker is best described by a melilite-type structure. Upon hydration, the network polymerizes to form a calcium, sodium aluminosilicate hydrate gel. The synthesis route also creates various metastable carbonates and bicarbonates from captured CO2 and alkali-additives that transform into stable carbonate phases like calcite, aragonite, and gaylussite, after hydration. This indicates accelerated carbonation reactions occur during clinker production and demonstrates novelty as a green cement technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call