Abstract

The degradation of amorphous indium–gallium–zinc–oxide (a-IGZO) thin film transistor (TFT) inverter operation is investigated under AC pulse stresses. From the extraction of subgap density of states (DOSs), the dominant mechanism of the pulse stress-induced degradation of driver TFT is considered as the increase of acceptor-like deep states, while that of the load TFT is attributed to the increased number of electrons trapped into the interface and/or a-IGZO thin films. We also observe that the rising and falling time of the induced pulse affects each TFT of the inverter in a different manner, and discuss the related mechanism of this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.