Abstract
Condensation is significantly enhanced by condensing vapor as droplets (instead of a film), which rapidly shed-off. Electrowetting (EW)-induced coalescence and shedding of droplets have been recently shown to accelerate condensation. This work studies the influence of AC electrowetting fields on short-duration droplet shedding on hydrophobic surfaces. Experiments involve tracking the shedding of an ensemble of water droplets under the influence of EW fields, with three parameters being varied (voltage, AC frequency, and device geometry). Significant physical insights into EW-induced droplet shedding are obtained. First, EW enables almost complete removal of water (dry area fraction ∼98%) in very short time durations (∼ 1 s). Second, while the dry area fraction does depend on the applied voltage, significant water shedding can be achieved without needing to apply voltages significantly higher than the threshold voltage. Third, the frequency of the AC waveform does not influence the dry area fraction (for voltages above the threshold voltage); however the time constant associated with droplet shedding strongly depends on the AC frequency. Fourth, the orientation of the device influences water removal due to electrostatic pinning of droplets. Importantly, the measured water removal fluxes immediately after the application of an EW field are two orders of magnitude higher than those measured over a long-duration condensation experiment; this highlights the benefits of intermittent EW fields as opposed to continuous EW fields. Overall, these results suggest that EW on hydrophobic surfaces offers benefits comparable to those offered by superhydrophobic surfaces.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have