Abstract

Deposition of ceramic nanoparticles (dispersed in a non-aqueous suspension) on in-plane electrodes and under the influence of AC electric fields in the frequency range of 0.01 Hz - 10 kHz is investigated. Analysis of the particle response to the applied field is a difficult task due to the mutual effect of electric- and hydrodynamic force which are present in the system. In this work, however, we show the possibility of dividing the frequency range into four domains with four distinct governing mechanisms. Possible mechanisms are suggested and dominant forces are determined for each domain. In situ optical microscopy observations as well as numerical calculations are used for three dimensional visualization of nanoparticles´ movement dispersed in liquid medium. New applications such as micro-patterning and sorting ceramic particles are introduced for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.