Abstract
Temporal variability in flow is central to the functioning of river ecosystems, with current conceptual models emphasising the importance of flow events, namely overbank flood pulses and in-channel flow pulses, in enhancing riverine fish production. However, whilst the benefits of flood pulses have been widely documented, there is an overall dearth of information with regard to the role of flow pulses in enhancing fish spawning and recruitment. To test the validity of applicable conceptual models of floodplain fish production in response to alter - nating low-flow and flow-pulse years in the absence of a flood pulse, fish larvae were sampled every three to five weeks from 2002 to 2007 in an anabranch system of the highly-regulated and semi-arid lower Murray River (south- eastern Australia). Small-bodied native fish (mainly, un-specked hardyhead, carp gudgeon, flathead gudgeon and Australian smelt) spawned successfully in every year irrespective of hydrological conditions, with Australian smelt being particularly abundant in two of the three low-flow years following a flow-pulse event. However, spawning in the majority of these small-bodied species was enhanced by the two flow pulses. On the contrary, large-bodied silver perch and golden perch only spawned during one of the two spring flow pulses, emphasising the importance of both timing and duration of a flow pulse along with its coupling with temperature. The findings of the present study support recent views that a combination of conceptual models of floodplain fish production is likely to apply in temperate to semi-arid floodplain rivers. Management measures aimed at the benefit of native fish communities should account for both flow and flood pulses through the release of environmental water, and this should be sup- ported by long-term studies able to span the components of a river's flow history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.