Abstract

The cold springs underlain by gas hydrates on the Qinghai-Tibet Plateau (QTP) are similar to deep-sea cold seeps with respect to methane biogeochemistry. Previous studies have shown that ammonia oxidizing bacteria (AOB) and archaea (AOA) are actively present and play important roles in the carbon/nitrogen cycles in cold seeps. Studying AOA and AOB communities in the QTP cold springs will be of great importance to our understanding of carbon and nitrogen cycling dynamics related to the underlying gas hydrates on the QTP. Thus, the abundance and diversity of AOB and AOA in sediments of four cold springs underlain by gas hydrates on the QTP were determined by using quantitative polymerase chain reaction and amoA gene (encoding ammonia monooxygenase involved in ammonia oxidation) phylogenetic analysis. The results showed that the AOB and AOA amoA gene abundances were at 103–104 copies per gram of the sediments in the investigated cold springs. The AOB population consisted of Nitrosospira and Nitrosomonas in contrast with the mere presence of Nitrosospira in marine cold seeps. The AOB diversity was higher in cold springs than in cold seeps. The AOA population was mainly composed of Nitrososphaera, in contrast with the dominance of Nitrosopumilus in cold seeps. The terrestrial origin and high level of dissolved oxygen of the cold springs may be the main factors accounting for the observed differences in AOB and AOA populations between the QTP cold springs and marine cold seeps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call