Abstract

Ammonia oxidation, performed by both ammonia oxidizing bacteria (AOB) and archaea (AOA), is an important step for nitrogen removal in constructed wetlands (CWs). However, little is known about the distribution of these ammonia oxidizing organisms in CWs and the associated wetland environmental variables. Their relative importance to nitrification in CWs remains still controversial. The present study investigated the seasonal dynamics of AOA and AOB communities in a free water surface flow CW (FWSF-CW) used to ameliorate the quality of polluted river water. Strong seasonality effects on potential nitrification rate (PNR) and the abundance, richness, diversity and structure of AOA and AOB communities were observed in the river water treatment FWSF-CW. PNR was positively correlated to AOB abundance. AOB (6.76×105–6.01×107 bacterial amoA gene copies per gram dry sediment/soil) tended to be much more abundant than AOA (from below quantitative PCR detection limit to 9.62×106 archaeal amoA gene copies per gram dry sediment/soil). Both AOA and AOB abundance were regulated by the levels of nitrogen, phosphorus and organic carbon. Different wetland environmental variables determined the diversity and structure of AOA and AOB communities. Wetland AOA communities were mainly composed of unknown species and Nitrosopumilus-like organisms, while AOB communities were mainly represented by both Nitrosospira and Nitrosomonas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call