Abstract

The dynamics and energetics are presented of two Eley–Rideal reactions by which SiH radicals impinging at thermal energies on growth surfaces during plasma deposition of hydrogenated amorphous silicon (a-Si:H) films abstract hydrogen atoms from the surface and return to the gas phase as SiH 2 radicals. The reactions were observed during classical molecular-dynamics simulations of a-Si:H film deposition from SiH radicals impinging on an initially H-terminated Si(001)-(2×1) surface maintained at 500 K. The H-abstraction reaction may either produce a dangling bond on the surface or eliminate a surface coordination defect. The computed activation energy barriers for the two hydrogen abstraction reactions are 0.15 and 0.07 eV, respectively, and the corresponding exothermic reaction energies are 0.20 and 0.30 eV. The effects of both reactions on the growth surface are examined through detailed analysis involving the local structural configurations and the associated bond angle and bond length distributions in the vicinity of the surface hydrogen abstraction sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.