Abstract

Abstract Triple-negative breast cancer (TNBC) patients have the highest risk of recurrence and metastasis. Because they cannot be treated with targeted therapies, and many do not respond to chemotherapy, they represent a clinically underserved group. While physiological inhibitors of metastasis (metastasis suppressors) play key roles in regulating tumor growth, invasion and metastasis, their role in regulating the tumor microenvironment and immune system is unknown. We hypothesized that the metastasis suppressor Raf Kinase Inhibitory Protein (RKIP) regulates stromal cells, which then affect tumor invasiveness. Using species-specific RNAseq we determined that expression of RKIP in tumors markedly reduces the number and metastatic potential of infiltrating TAMs. While TAMs isolated from TNBC xenografts drive in vitro invasion, RKIP+ derived TAMs did not drive invasion and had decreased secretion of pro-metastatic factors including SLPI, OPN, MMP-12, Galectin-3, VEGF-A, VEGF-D, TNFR2, and PGRN. We determined that RKIP regulates TAM recruitment by blocking HMGA2, which activates CCL5 expression. CCL5 rescued pro-metastatic TAM infiltration as well as tumor intravasation. We additionally showed that factors decreased in RKIP-derived TAMs were restored in CCL5-derived TAMs. CCL5 derived TAMs were also able to promote metastasis when co-injected with MDA-MB-231 tumors. These tumor cells demonstrated permanent increases in both growth and invasive potential after co-injection with highly pro-metastatic CCL5 derived TAMs. To determine the clinical utility of these TAM genes we combined their expression with RKIP signaling in the tumor to create a signature that strikingly separates TNBC patients based on outcome. Our results demonstrate for the first time that metastasis suppressors can regulate the microenvironment, regulating invasion through TAMs. Our results also suggest aggressive triple negative breast cancers could be controlled by attacking CCL5 derived TAMs crucial for promoting metastasis. Citation Format: Daniel C. Rabe, Casey Frankenberger, Russell Bainer, Devipriya Sankarasharma, Kiran Chada, Thomas Krausz, Yoav Gilad, Lev Becker, Marsha Rich Rosner. Metastasis suppressors regulate the tumor microenvironment by blocking recruitment of pro-metastatic tumor-associated macrophages. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Metastasis; 2015 Nov 30-Dec 3; Austin, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(7 Suppl):Abstract nr PR02.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call