Abstract

Abstract Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Activation of the cyclin D1 oncogene, often by amplification or rearrangement, is a major driver of multiple types of human tumors including breast and squamous cell cancers, B-cell lymphoma, myeloma, and parathyroid adenoma. The cyclin D1 gene is amplified or overexpressed in up to half of human breast cancers and its mammary-targeted overexpression induces mammary tumorigenesis in mice. Cyclin D1 encodes the regulatory subunit of the cyclin-dependent kinase (CDK) holoenzyme that phosphorylates several substrates including the retinoblastoma protein (pRb) to advance the G1S cell cycle checkpoint, promote DNA synthesis and regulate NRF-1 to inhibit mitochondrial biogenesis thereby coordinating nuclear and mitochondrial functions. In addition to cyclin D1's function as a regulatory subunit of a CDK holoenzyme, several CDK-independent functions have been identified. Tumors overexpressing cyclin D1 tend to display normal levels of proliferation and expression of E2F target genes, which contrasts with tumors overexpressing cyclin E or an activator for pRb. Breast cancers overexpressing cyclin D1 that are wild type for pRb have relatively normal proliferation rates, in contrast to those caused by genetic inactivation of pRb, which show significantly increased proliferation rates. Furthermore, the alternate splice form of cyclin D1, (cyclin D1b), has potent transforming ability, which does not correlate with the ability to phosphorylate the pRb protein. Several other properties of cyclin D1 have been identified including the induction of cellular migration and enhanced angiogenesis, inhibition of mitochondrial biogenesis, and mediating DNA-damage repair signaling. Cyclin D1 binding proteins participating in these putatively CDK-independent functions include PACSIN2, NRF1, and p27KIP1; binding to p27KIP1 and PACSIN2 contribute to the pro-migratory function of cyclin D1. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1-/- mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1WT or cyclin D1KE in the mammary gland was sufficient to induce the CIN signature within 7 days. Sustained expression of cyclin D1KE induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1WT and cyclin D1KE to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis. Citation Information: Cancer Res 2013;73(24 Suppl): Abstract nr P5-07-06.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call