Abstract

Missense variant Ile79Asn in human cardiac troponin T (HcTnT-I79N) tail region has been linked to familial hypertrophic cardiomyopathy (HCM), arrhythmia, and sudden cardiac death. It has been reported that inotropic stimulation with high extracellular Ca 2+ or isoproterenol led to diastolic dysfunction in both isolated and in vivo HcTnT-I79N mice hearts. Although HcTnT-I79N effects are acknowledged to be dependent on the inotropic state of the cardiac muscle, little is known about how this pathogenic variant affects the Frank-Starling law of the heart. To further investigate the functional and structural consequences of this deadly variant in a stretch-dependent manner, cardiac tissues were harvested from non-transgenic (NTg) control mice and transgenic mice bearing HcTnT-I79N. Left ventricular papillary muscle bundles were permeabilized and mounted for mechanical measurements. Sarcomere length (SL 1.9, 2.1 or 2.3 μm) was set at pCa 8 using HeNe laser diffraction and then Ca 2+ -dependence of isometric force, sinusoidal stiffness (SS, 0.2% PTP length oscillation) and rate of tension redevelopment ( k TR ) were measured. We observed that HcTnT-I79N tissue exhibited increased myofilament Ca 2+ -sensitivity of force, increased SS, slower k TR at all levels of Ca 2+ -activation, and diminished length-dependent activation (LDA). Small-angle X-ray diffraction revealed that HcTnT-I79N permeabilized cardiac muscles exhibit smaller myofilament lattice spacing at longer SLs (2.1 μm and 2.3 μm) compared to NTg. Using 3% Dextran T500 to osmotically compress the myofilament lattice (SL 2.1 μm), HcTnT-I79N showed no change in myofilament lattice spacing and little change in contractile indices associated with LDA. Interestingly, upon osmotic compression, HcTnT-I79N displayed a decrease in disordered relaxed state (DRX, ON state) of myosin and an increase in super-relaxed state (SRX, OFF state) of myosin. We conclude that altered cardiac myofilament performance, lack of responsiveness to osmotic compression, and reduced LDA observed with HcTnT-I79N are partially due to a combination of smaller myofilament lattice and disturbed ON and OFF states of myosin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call