Abstract
Introduction: Myocardial infarction (MI) is a leading cause of mortality worldwide. The potency of cell-based therapies for MI is increasingly attributed to the release of extracellular vesicles (EVs) which consist of a lipid/protein membrane and encapsulate RNA cargo. Specifically, EVs from ckit+ progenitor cells (CPCs) and mesenchymal stromal cells (MSCs) are shown to be pro-reparative, with clinical trials ongoing. Despite copious research into EV cargo, the role of donor cell type on EV membrane composition and its effects on EV uptake mechanism by recipient cells remain unclear. This is crucial for designing EV-based therapeutics as uptake mechanism dictates the functionality of the cargo. Thus, we hypothesized that (1) EV membrane composition varies by donor cell type and (2) this variation covaries with the mechanism of uptake. Methods: EVs were isolated using differential ultracentrifugation from four cardiac cell types: CPCs, MSCs, cardiac endothelial cells (CECs) and rat cardiac fibroblasts (RCFs) grown in normoxia (18% O 2 ) or hypoxia (1% O 2 ) to mimic ischemic conditions. EVs were characterized for size and concentration. EV lipid membrane profile was assessed through LC/MS/MS. Donor cell’s role on EV uptake mechanism was determined by inhibiting known uptake pathways (clathrin, dynamin, macropinocytosis and caveolae/lipid raft) with small molecules and quantifying CEC/RCF endocytosis of EVs with flow cytometry. Finally, partial least squares regression was used to determine the most important lipids involved in EV uptake mechanism. Results: EVs were successfully isolated and characterized. The EV membrane lipid profiles clustered by donor cell type. Uptake mechanism of EVs varied based on both donor and recipient cell type with dynamin mediated endocytosis being the most common. Further, the uptake mechanism was independent of normoxic/hypoxic conditioning. Finally, supervised learning methods revealed specific lipid classes (sphingolipids and glycerophospholipids) covaried with EV uptake mechanism. Conclusion: This work highlights the importance of the understudied EV membrane and its role in delivering therapeutic cargo. Active donor cell selection for efficient EV uptake will allow for more potent EV-based MI therapies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have