Abstract

In this paper, a novel reagentless amprometric immunosensor was built on the conductive multilayer, comprised of Nafion-coated multi-wall carbon nanotubes (MWCNT), thionine (Thi) and gold nanoparticles (nano-Au). First, Nafion-MWCNT homogeneous composite was dropped on the surface of the glass carbon electrode (GCE). Then Thi was chemisorbed by both carboxylic MWCNT and cation exchanger Nafion. Furthermore, the negative-charged nano-Au, which was used to immobilize biomolecules, was chemisorbed onto Thi film through the electrostatic force with the amino groups of Thi. The stepwise self-assembly process of the immunosensor was characterized by means of cyclic voltammetry (CV), and the microstructure of modified film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using α-1-fetoprotein (AFP) as a model, this novel immunosensor presented amplified sensitivity, good stability, and a broader linear response in two ranges from 0.5–20 ng/mL and 20–200 ng/mL with a detection limit of 0.26 ng/mL, as well as good selectivity and storage stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.