Abstract

Background: Aneurysmal subarachnoid hemorrhage (SAH) can cause significant mortality and morbidity. To develop a therapy for prevention of intracranial aneurysmal rupture and subsequent SAH, it is important to clarify the mechanism of intracranial aneurysmal rupture. Stimulation of the renin-angiotensin system (RAS) causes hypertension and cardiovascular remodeling. Recent evidence shows that angiotensin II enhances endoplasmic reticulum (ER) stress and inhibition of ER stress prevents angiotensin II-induced vascular remodeling but not hypertension in mice. RAS has also been implicated in intracranial aneurysms. We have previously shown that angiotensin II receptor blocker (losartan) prevented intracranial aneurysmal rupture in a mouse model without affecting systemic hypertension. To clarify the mechanism of intracranial aneurysmal rupture via RAS, we have tested our hypothesis that inhibition of ER stress prevents intracranial aneurysmal rupture in a mouse model. Method: We used a mouse model of intracranial aneurysms in which spontaneous aneurysmal rupture causes neurologic symptoms. Intracranial aneurysms were induced in wild type mice by a single stereotactic injection of elastase (35mU) into the cerebrospinal fluid at right basal cistern and deoxycorticosterone (DOCA)-salt hypertension. Vehicle or 4-phenylbutyric acid (PBA, ER stress inhibitor , 100mg/kg/day) was subcutaneously injected into all mice once a day. To detect aneurysmal rupture, we performed daily neurological examinations. Symptomatic mice were euthanized immediately when they developed neurological symptoms, and all asymptomatic mice were euthanized 21 days after aneurysm induction. The incidence of aneurysms and rupture rate were compared between vehicle group and PBA group. Results: The incidence of aneurysms was not significantly different between two groups (100% in vehicle, 20 of 20 vs. 87% in PBA, 20 of 23, p=0.09). However, rupture rate was significantly lower in the PBA group (60%, 12 of 20) than the vehicle group (95%, 19 of 20). (p=0.008). Conclusion: Inhibition of ER stress reduced aneurysmal rupture in a mouse model of intracranial aneurysm induced by combination of elastase injection and DOCA-salt hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call