Abstract
In this paper, we report on our experience with the application of validated models to assess performance, reliability, and adaptability of a complex mission critical system that is being developed to dynamically monitor and control the position of an oil-drilling platform. We present real-time modeling results that show that all tasks are schedulable. We performed stochastic analysis of the distribution of tasks execution time as a function of the number of system interfaces. We report on the variability of task execution times for the expected system configurations. In addition, we have executed a system library for an important task inside the performance model simulator. We report on the measured algorithm convergence as a function of the number of vessel thrusters. We have also studied the system architecture adaptability by comparing the documented system architecture and the implemented source code. We report on the adaptability findings and the recommendations we were able to provide to the system's architect. Finally, we have developed models of hardware and software reliability. We report on hardware reliability results based on the evaluation of the system architecture. As a topic for future work, we report on an approach that we recommend be applied to evaluate the system under study software reliability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have