Abstract

Abstract Introduction: Ikaros family zinc finger protein 1 and 3 (IKZF1/3) are essential transcription factors (TF) for terminal differentiation of B and T cells. Depletion of IKZF1/3 inhibits the growth of multiple myeloma (MM) cells, confirming their dependency on IKZF1/3. IMiDs (lenalidomide, pomalidomide) are effective therapies for treatment of MM and promote degradation of IKZF1/3 via their interaction with CRL4-CRBN E3 ligase. However, most patients treated with lenalidomide or pomalidomide eventually develop progressive disease due to acquired resistance, underscoring the unmet medical need. CFT7455 is a novel IKZF1/3 degrader optimized for high binding affinity to cereblon (CRBN), rapid and deep IKZF1/3 degradation, and potent dose-dependent efficacy in vivo. Results: A series of novel benzoimidazolone-based CRBN ligands with potent binding affinity were discovered and their binding modes were informed by CRBN co-crystal structures. Although the benzoimidazolone-based CRBN binders did not exhibit IKZF1/3 degradation activity, structural insights into their unique binding modes and knowledge of the IKZF1/3 degradation pharmacophore were combined to enable identification of a novel benzoisoindolone-based ligand that exhibited a 10-fold potency increase in biochemical CRBN binding and a 30-fold potency increase in H929 MM cell growth inhibition when compared to lenalidomide. Additional rounds of structure-based drug design, degradation and phenotypic profiling led to the discovery of CFT7455, a highly potent, selective and orally bioavailable degrader of IKZF1/3. CFT7455 demonstrated an 800 and 1600-fold improvement in CRBN binding compared to pomalidomide in biochemical and cellular NanoBRET assays, respectively. In H929 MM cells expressing HiBiT-tagged IKZF1, CFT7455 induced >75% degradation of IKZF1 within 1.5 hrs. The high binding affinity and degradation catalysis shown with CFT7455 enabled potent antiproliferative activity across a panel of MM cell lines, as well as H929 cells made resistant to IMiDs. In vivo, CFT7455 catalyzed deep and durable degradation of IKZF3, translating into potent antitumor activity in multiple myeloma xenograft models. CFT7455 also retained its activity in models resistant or insensitive to clinically approved IMiDs as single agent or in combination with standard of care agent dexamethasone. Conclusion: Overall, CFT7455 is a next generation IKZF1/3 degrader, with improved potency and anticancer efficacy in preclinical models compared to existing IMiDs. These features make CFT7455 an exciting drug candidate, as a single agent or for use in combination. CFT7455 is currently being studied in a Ph1 clinical trial. Citation Format: James A. Henderson, Scott J. Eron, Andrew Good, R Jason Kirby, Samantha Perino, Roman V. Agafonov, Prasoon Chaturvedi, Bradley Class, David Cocozziello, Ashley A. Hart, Christina S. Henderson, Marta Isasa, Brendon Ladd, Matt Schnaderbeck, Michelle Mahler, Adam S. Crystal, Roy M. Pollock, Christopher G. Nasveschuk, Andrew J. Phillips, Stewart L. Fisher, David A. Proia. The discovery and characterization of CFT7455: A potent and selective degrader of IKZF1/3 for the treatment of relapsed/refractory multiple myeloma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr ND13.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call