Abstract

Abstract The mismatch repair (MMR) pathway is known as a tumor suppressive pathway and genes involved in MMR are commonly mutated in hereditary colorectal or other cancer types. However, the function of MMR genes/proteins in breast cancer progression and metastasis are largely unknown. We found that MSH2, but not MLH1, is highly enriched in basal-like breast cancer (BLBC) and that its protein expression is inversely correlated with overall survival time (OS). MSH2 expression is frequently elevated due to genomic amplification or gain-of-expression in BLBC, which results in increased MSH2 protein to pair with MSH6 (collectively referred to as MutSα). Genetic deletion of MSH2 or MLH1 results in a contrasting phenotype in metastasis, with MSH2-deletion leading to reduced metastasis and MLH1-deletion to enhanced liver or lung metastasis. Mechanistically, MSH2-deletion induces the expression of a panel of chemokines in BLBC via epigenetic and/or transcriptional regulation, which leads to an immune reactive tumor microenvironment (TME) and elevated immune cell infiltrations. MLH1 is not correlated with chemokine expression and/or immune cell infiltration in BLBC, but its deletion results in strong accumulation of neutrophils that are known for metastasis promotion. Our study supports the differential functions of MSH2 and MLH1 in BLBC progression and metastasis, which challenges the paradigm of the MMR pathway as a universal tumor suppressive mechanism. Citation Format: Tanzia Islam Tithi, Jiao Mo, Weizhou Zhang. Contrasting roles of different mismatch repair proteins in basal like breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 2 (Late-Breaking, Clinical Trial, and Invited Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(7_Suppl):Abstract nr LB410.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call