Abstract

Abstract Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma originating from skeletal muscle in children and adolescent young adults. Despite multi-modal aggressive therapies, relapsed, refractory or metastatic rhabdomyosarcoma remains a lethal disease with no significant improvement in outcome over decades of clinical trials. Therefore novel therapies are needed. FGFR4 is a developmentally regulated cell surface receptor tyrosine kinase that is overexpressed in RMS when compared with normal tissues, and mutationally activated in about 7.5% of RMS. Recently we showed that PAX3-FOXO1 establishes a super-enhancer in the FGFR4 genomic locus driving its high expression in fusion positive RMS. CAR T-cell therapy is effective in treating refractory and relapsed B-cell leukemia and lymphoma, with three CARs targeting CD19 approved by the FDA. Multiple CART trials are currently underway for solid tumors. Since FGFR4 is a cell surface protein, we hypothesized that FGFR4 will provide a rational target for immunotherapy in RMS. We confirmed by immunohistochemistry staining, western analysis, and Meso Scale Discovery that FGFR4 protein is highly differentially expressed in RMS samples. We developed a murine anti-FGFR4 antibody, 3A11, by immunizing mouse with FGFR4-IG fusion protein. 3A11 showed high affinity and specificity of binding to FGFR4. We then developed a second-generation CAR using the VL and VH domain of 3A11 antibody and found that the scFvFc retained its specificity and high affinity at nanomolar range. Human T cells transduced with 3A11 CAR construct were found to be highly potent at inducing IFN-γ, TNF-α, IL-2 and cytotoxicity when the FGFR4-CART was co-cultured with RMS cells, but not with RMS cells with FGFR4 knocked out or FGFR4 negative cells. 3A11 CART incubated with human primary cells obtained from liver, kidney, heart, and pancreas, did not elicit a cytokine response, indicating a low potential for “on-target off-tumor” toxicity. In vivo testing also found that 3A11 CART eliminated RMS cells in both murine xenograft metastatic and localized subcutaneous models. Therefore we have developed a CART targeting FGFR4 that shows high potency for treating RMS. A phase 1 FGFR4-CART clinical trial is planned for children and adolescent young adults with relapsed/refractory rhabdomyosarcoma. Citation Format: Adam Tai Chi Cheuk, Meijie Tian, Nityashree Shivaprasad, Steven Highfill, David Milewski, G Tom Brown, Peter Azorsa, Dina Schneider, Berkley Gryder, Jun S Wei, Young Kwok Song, Hsien-Chao Chou, Jerry Wu, Joon-Yong Chung, Brian Belyea, Corinne Linardic, Stephen M Hewitt, Boro Dropulic, Rimas Orentas, Javed Khan. Potent antitumor activity of a FGFR4 CAR-T in rhabdomyosarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB213.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call