Abstract
Introduction: Injection of induced pluripotent stem cell-derived cardiomyocytes has been reported as a promising approach to regenerate loss myocardium and restore heart function after ischemic injury. However, immaturity of the transplanted cardiomyocytes and their poor survival rates caused by limited blood supply remain as major hurdles for clinical translation. Hypothesis: We tested the hypothesis that co-culture of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) with hiPSC-derived endothelial cells (ECs) promotes CM maturation in vitro, and that co-transplantation of both hiPSC-CMs and hiPSC-ECs facilitates hiPSC-CM muscularization in myocardial ischemic injured mice and non-human primates. Methods and Results: We examined the therapeutic effect of co-transplantation of hiPSC-CMs and hiPSC-ECs in NOD-SCID mice undergoing myocardial infarction (N = 14 / group). Mice receiving co-transplantation had an improvement in ejection fraction compared to control (4.2 ± 1.2 % vs -8.4 ± 0.9 %, P < 0.0001), and even those receiving high-dose (-0.3 ± 0.9 %, P = 0.052) and low-dose (-2.4 ± 1.1 %, P = 0.001) hiPSC-CMs alone treatment. Moreover, less arrhythmic events were observed in co-transplantation using three-lead electrogram. To be more clinically relevant, we first showed in healthy non-human primates (N = 4) that hiPSC-CM engraftment, maturation, and integration was achieved when co-transplanted with hiPSC-ECs. Furthermore, we then examined the therapeutic effect of co-transplantation of hiPSC-CMs and hiPSC-ECs in rhesus macaques undergoing ischemia-reperfusion surgery (N = 3 / group). Consistent with the mouse model, co-transplantation in rhesus macaques significantly improved the ejection fraction (10 ± 1.3 % vs -1.8 ± 2.2 %, P = 0.010), accompanied by a reduced infarct size compared to control (16 ± 1.1 % vs 23 ± 3.3 %, P = 0.091). Conclusions: This study demonstrates the beneficial effects of co-transplantation of hiPSC-CMs with hiPSC-ECs, promoting hiPSC-CM maturation, enhancing neovascularization, and improving cardiac function in both mouse and non-human primate hearts. Delivery of this combined cell therapy holds promise for future clinical translation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.