Abstract
Abstract Glycolysis inhibition is an active area of investigation in cancer. However, few compounds have progressed beyond the cell culture stage. We have recently demonstrated that genomic passenger deletion of the glycolytic enzyme Enolase 1 (ENO1) leaves gliomas harboring such deletions with less than 10% of normal enzymatic activity, rendering them exquisitely sensitive to enolase inhibitors. However, the tool compound that we employed for these in vitro studies, Phosphonoacetohydroxamate (PhAH), has very poor pharmacological properties and was ineffective in vivo. We performed a SAR studies to increase inhibitor specificity towards ENO2 as well as pro-druging to increase cell permeability. The lead compound generated by these efforts, termed POMHEX, is selectively active against ENO1-deleted glioma cells in culture at ∼35nM (versus μM for PhAH). Using an orthotopic intracranial xenografted model where tumor growth and response to therapy are monitored by MRI, we show that POMHEX is capable of eradicating intracranial ENO1-deleted tumors, with mice remaining recurrence-free even after treatment discontinuation. Taken together, these results reinforce that glycolysis is a viable target and provide in vivo proof-of-principal for the concept of using passenger deletions as targetable vulnerabilities in cancer therapy. Citation Format: Yu-Hsi Lin, Joe Marszalek, Yuting Sun, Naima Hammoudi, Paul Leonard, David Maxwell, Nikunj Satani, Peng Zhang, Todd Link, Gilbert Lee, Maria E. Di Francesco, Barbara Czako, Alan Y. Want, Ronald A. DePinho, Florian L. Muller. Pomhex: a cell-permeable high potency Enolase inhibitor with in vivo anti-neoplastic activity. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C183.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have