Abstract

Abstract Biomaterials have shown substantial potential to integrate synergistically with current cancer vaccine strategies and enhance their effectiveness. We recently developed an injectable biomaterial vaccine via spontaneous assembly of mesoporous silica (MPS) microparticles into a 3D scaffold in vivo. When formulated with GM-CSF and the TLR-9 agonist CpG, the MPS vaccine modulates host dendritic cell (DC) activation and trafficking. Here we demonstrate that a single injection of the MPS vaccine induced persistent germinal center B cell activity for over 30 days. Consequently, when immunized with a small linear Her2/neu peptide within the Trastuzumab binding domain, the MPS vaccine elicited over 2 orders of magnitude higher IgG1 and IgG2a antibody titer compared to a traditional bolus vaccine, and the antibody exhibited immunoreactivity on the native Her2 structure on breast cancer cells. To further enhance CTL responses against tumor antigens, we co-presented the antigen with polyethylenimine (PEI) in the MPS vaccine. PEI increased antigen cross-presentation in murine DCs, and TNF-a and IL-6 production in both murine and human DCs in vitro. Compared to the MPS vaccine, the MPS-PEI vaccine enhanced activated and antigen+ DCs in the vaccine and the vaccine draining lymph node by ~2 fold. Systemically, using both OVA and a HPV-E7 peptide as antigens, the MPS-PEI vaccine induced ~2.5 fold higher IFN-y producing antigen specific circulating CD8+ T-cells compared to the MPS vaccine. Impressively, using a HPV-E7 expressing tumor model, we demonstrated that a single injection of the MPS-PEI vaccine completely eradicated large established tumors in over 80% of mice. Finally, when immunized with a pool of recently sequenced B16 melanoma neoantigen peptides, the MPS-PEI vaccine induced potent therapeutic tumor growth control and synergy with anti-CTLA4 checkpoint blockade therapy. These findings suggest that the MPS vaccine may serve as a facile multifunctional and multi-epitope platform to modulate host immune cell function and augment personalized antitumor immunity. Citation Format: Aileen W. Li, Maxence O. Dellacherie, Miguel Sobral, Omr O. Ali, Jaeyun Kim, David J. Mooney. DC-recruiting biomaterial vaccine to enhance antitumor immunity [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr B119.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.