Abstract

Abstract Introduction: It is strikingly difficult to develop successful treatments for PDAC; even with curative resection, most patients die from early occult metastases. Prior studies identified the presence of tumor-infiltrating lymphocytes (TILs) in primary PDAC tumors as having prognostic significance in the PDAC adjuvant setting, sharpening the questions of what fraction of patients have immune-infiltrated tumors and what therapeutic strategies should be pursued in these patients vs. the non-infiltrated group. The phase 3 APACT trial evaluated the use of adjuvant nab-paclitaxel plus gemcitabine vs. gemcitabine in 866 patients with PDAC who had undergone primary tumor resection, with the primary endpoint of disease-free survival evaluated by independent review. We extended studies of the tumor microenvironment of PDAC to a large set of resected APACT primary tumors in an effort to further refine features of tumor or immune infiltrate that influence disease progression and to determine if chemotherapy regimen–specific predictive signatures are identifiable. Tissue analyses for a large subset of APACT samples included RNA-seq, DNA-seq, multiplexed immunohistochemistry (IHC), and proteomics. Methods: We imaged and quantified markers for tumor cells, 7 different immune cells, and 2 immune checkpoint markers using bright-field chromogenic multiplexed IHC from pretreatment samples for more than 500 APACT primary tumor samples. We computationally defined the tumor, tumor margin, and distal stromal (> 150 μm from tumor boundary) regions, and quantified densities and distributions of immune cells in these regions. As part of an initial analysis of more than 400 samples, we applied both unsupervised clustering and supervised classification to these IHC measurements to identify patient subgroups with similar spatial arrangements of immune cells relative to tumor regions. Results: The preliminary analysis of normalized cell densities across all 3 tissue regions revealed 3 patient subgroups: one in which immune cells are mixed within the tumor regions; a second where immune cells approach the tumor boundary but are depleted within the tumor; and a third in which immune cells are depleted in both tumor and its margin, remaining at high densities only in the distal stromal regions. Within these latter subgroups, CD20+, CD4+, and CD8+ cells were more prevalently depleted from tumor and/or margin, whereas CD163+ and CD163+CMAF+ cells showed less of this arrangement. Nearly 85% of patients fell in the second or third patient group. Conclusions: We are pursuing analyses of these data in conjunction with upcoming molecular and genetic profiling data to further elucidate the association of the immune cell populations and these subgroups with clinical outcomes. These data will provide an unprecedented opportunity for exploratory analysis and discovery of immune, molecular, and genetic biomarkers for PDAC patient stratification. Citation Format: David J. Reiss, Thomas Lila, Suzana Couto, Sitharthan Kamalakaran, Yan Ren, Doug Bowman, Amber Ortiz, Maria Wang, Clifton Drew, Kao-Tai Tsai, Mathieu Marella, Brian Fox, Garth McGrath, Matthew Trotter, Fadi Towfic, Ian Cushman, Alexander Ratushny, Brian Lu, Daniel Pierce, Jim Cassidy. Spatial organization of pancreatic ductal adenocarcinoma (PDAC)–associated immune cells from the Adjuvant Pancreatic Adenocarcinoma Clinical Trial (APACT) study [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2019 Sept 6-9; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2019;79(24 Suppl):Abstract nr A43.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call