Abstract

The co-existence of diabetes, obesity, hypertension - diabesotension - is a major burden in western societies and often culminates into heart failure (HF). Diabesotension is associated with a chronic status of low-grade inflammation, involving macrophage infiltration into adipose and cardiac tissues, local activation of inflammatory pathways and concomitant insulin-resistance. We showed that the microRNA miR-155 is a powerful modulator of hypertension-induced cardiac inflammation and HF. Here we hypothesize that absence of miR-155 in macrophages protects against adipose tissue and cardiac inflammation during diabesotension and thereby prevents insulin resistance and cardiac dysfunction. Male C57Bl/6J mice received a bone marrow transplantation of miR-155 WT (n=30) or miR-155 KO (n=30) donors with same genetic background. High fat (HFD; n=22/gr) or chow diet (n=8/gr) was given for 20 weeks. An HFD subgroup was subjected to pressure overload by angiotensin II (1.5mg/kg/d) for 4 weeks (HFD+PO; n=12/gr). Glycaemia, glucose tolerance test, cardiac MRI were performed after 16 and/or 20 weeks. Organs were stored for histology, RNA and FACS analysis. After 16 weeks of HFD, body weight (+11% WT; +14% KO; p<0.05) and glycaemia (+16% WT; +18% KO; p<0.05) increased compared to chow diet animals in both genotypes, confirming the status of obesity and pre-diabetes. Absence of macrophage miR-155 protected HFD-mice from glucose intolerance (at T15: WT 25.08; KO 18.15 mmol/L; p<0.05), suggesting that adipose tissue macrophages might contribute to insulin resistance. In addition, HFD+PO caused mild systolic dysfunction in WT but not in miR-155 KO animals compared to control (ejection fraction: -19% WT, p<0.05; -7% KO, n.s.). While cardiac interstitial fibrosis was not affected by absence of macrophage miR-155, cardiac CD45-positive leukocyte infiltration upon HFD+PO was abrogated. HFD+PO-induced cardiac expression of two PPAR-dependent metabolic genes, angiopoietin-like 4 and uncoupling protein 3, is repressed in the absence of macrophage miR-155. Our data suggest that macrophage miR-155 plays a role in the development of insulin resistance and cardiac dysfunction, possibly by affecting local immune cell function and metabolic programming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call