Abstract

Abstract Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression. Histone lysine acetylation is one of the most abundant epigenetic modifications central to control of gene transcription. Bromodomains are the only known readers of this specific lysine acetylation code, playing an important role in transcriptional regulation of diverse cellular processes such as inflammatory gene expression, mitosis and viral/host interactions. Recently, the human BET family bromodomains which consists of BRD2, BRD3, BRD4 and BRDT has emerged as new druggable target class for the development of specific protein interaction inhibitors, enabling a novel strategy for the development of new therapies for various diseases. Here we report the identification of potent BET bromodomain inhibitors using structure based drug design principle. Multiple distinct series of compounds have been identified with low nM potency in biochemical binding assay. Crystal structures of BRD4 in complex with hit compounds have been solved to assist in optimization. The lead compounds showed very good cell based activity and favorable ADME properties. The compounds demonstrated dose dependent inhibition of c-Myc expression confirming the mechanism of action. Further optimization of these compounds and profiling in relevant pre-clinical disease models is in progress. Citation Format: Sanjita Sasmal, Rajeev Kumar Shrimali, Chandrasekhar Abbineni, Kamala Kumari Arumalla, Anirudha Lakshminarasimhan, Karthikeyan Narasingapuram Arumugam, Nirbhay Kumar Tiwari, Narasimha K. Rao, Aravind AB, Subramanya Hosahalli. Identification of potent BET bromodomain inhibitors for treatment of cancer. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 671. doi:10.1158/1538-7445.AM2013-671

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.