Abstract

Backgrounds: The identification of a lineage-specific marker plays a pivotal role in understanding developmental process and is utilized to isolate a certain cell type with high purity for the therapeutic purpose. We here report a new cardiac-specific marker, and demonstrate its functional significance in the cardiac development. Methods and Results: When mouse pluripotent stem cells (ES and iPS cells) were stimulated with BMP4, Activin A, bFGF and VEGF, they differentiated into cardiac cells. To screen cell-surface expressing molecules on cardiac progenitor cells compared to undifferentiated mouse iPS and ES cells, we isolated Flk1+/PDGFRa+ cells at differentiation day 4 and performed microarray analysis. Among candidates, we identified a new G protein-coupled receptor, Latrophilin-2 (LPHN2) whose signaling pathway and its effect on cardiac differentiation is unknown. In sorting experiments under cardiac differentiation condition, LPHN2+ cells derived from pluripotent stem cells strongly expressed cardiac-related genes (Mesp1, Nkx2.5, aMHC and cTnT) and exclusively gave rise to beating cardiomyocytes, as compared with LPHN2- cells. LPHN2-/- mice revealed embryonically lethal and huge defects in cardiac development. Interestingly, LPHN2+/- heterozygotes were alive and fertile. For the purpose of cardiac regeneration, we transplanted iPS-derived LPHN2+ cells into the infarcted heart of adult mice. LPHN2+ cells differentiated into cardiomyocytes, and systolic function of left ventricle was improved and infarct size was reduced. We confirmed LPHN2 expression on human iPS and ES cell-derived cardiac progenitor cells and human heart. Conclusions: We demonstrate that LPHN2 is a functionally significant and cell-surface expressing marker for both mouse and human cardiac progenitor and cardiomyocytes. Our findings provide a valuable tool for isolating cardiac lineage cells from pluripotent stem cells and an insight into cardiac development and regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.