Abstract
Abstract Personalized cancer treatments using synergistic combinations of drugs is attractive but proves to be highly challenging. The combinatorial nature of such problems results in an enormous parameter space that cannot be resolved by empirical research, i.e. testing all combinations for all molecularly defined tumors. In addition, effective drug synergy is hard to predict. Here we present an approach to map data of drug-response encyclopedias and represent these as a drug atlas. This atlas consists of a framework of chemotherapeutic responses that represents a drug vulnerability landscape of cancer. Based on data from the literature we found that many synergistic drug combinations show distinct inter therapy responses and drug sensitivities. We confirmed this by performing a drug combination screen against glioblastoma where we used 270 combination experiments. From the identified dual therapies we were able to predict and validate a triple drug synergy which was validated in vivo. This new and generalizable strategy opens the door to unforeseen personalized multidrug combination approaches. Citation Format: Ravi Narayan, Piet Molenaar, Jian Teng, Bakhos Tannous, Tom Wurdinger, Jan Koster, Bart Westerman. A cancer drug atlas enables prediction of parallel drug vulnerabilities [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 576.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have