Abstract
Abstract Background: Transcriptionally active ESR1 gene fusions (ESR1-TAF) are a potent cause of estrogen receptor alpha-positive (ERα+) breast cancer endocrine therapy (ET) resistance. These ESR1-TAF are gain-of-function mutations, exhibiting estrogen-independent cell growth, motility and ET resistance. They are not directly druggable because the ERα C-terminal ligand binding domain (LBD) encoding sequence is replaced with a translocated in-frame partner gene sequence. Herein we utilized proteomic approaches to develop novel targeted therapies against ESR1-TAF driven tumorigenesis. Methods: ESR1 fusion cDNA constructs were expressed in ERα+ breast cancer cell lines (T47D and MCF7). Cell growth was assayed by an Alamar blue assay. A mass spectrometry (MS)-based Kinase Inhibitor Pulldown Assay (KIPA) was employed to identify druggable kinases that are commonly upregulated by diverse ESR1-TAFs. A panel of 22 ERα+ patient-derived xenograft (PDX) models were profiled using proteomics and phosphoproteomics to identify models with sensitivity to RET kinase inhibition. Results: KIPA detected an increased abundance of a receptor tyrosine kinase, RET, in T47D cells expressing ESR1-TAFs in an estrogen-independent manner, compared to stable cell lines expressing transcriptionally inactive fusions as well as wild-type ERα protein. Interestingly, RET was also increased when constitutive activating ERα LBD point mutants, Y537S and D538G, were expressed in breast cancer cells. Inhibition of the RET kinase in vitro by repurposing pralsetinib, an FDA-approved RET inhibitor for advanced thyroid and non-small-cell lung cancers, demonstrated a significant reduction in the growth of cells expressing ESR1-TAFs and ERα LBD mutants. These data nominate RET kinase as a common therapeutic vulnerability for ESR1-TAF expressing breast cancers. Proteomic profiling of 22 biologically heterogenous ERα+ PDX tumors defined targetable pathways and predicted tumor subsets that were responsive to RET inhibition therapy. Organoids and xenografts from the pan-ET resistant WHIM18 PDX (that expresses the ESR1-YAP1 TAF) were inhibited by pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. These data provide key preclinical rationale for the consideration of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. Interestingly, the growth of WHIM37 PDX (that expresses ERα D538G) that had low level of RET and high level of GFRα-1, the co-receptor of RET, was also suppressed by pralsetinib. This data suggests that either RET or GFRα-1 is a predictive biomarker for RET inhibitor efficacy. Conclusions: Kinome analysis of ESR1 translocated breast tumors using KIPA followed by drug sensitivity studies nominated RET as a new therapeutic target for ET-resistant ERα+ breast cancer. Citation Format: Xuxu Gou, Beom-Jun Kim, Meenakshi Anurag, Jonathan T. Lei, Meggie N. Young, Matthew V. Holt, Diana Fandino, Craig T. Vollert, Purba Singh, Mohammad A. Alzubi, Anna Malovannaya, Lacey E. Dobrolecki, Michael T. Lewis, Shunqiang Li, Matthew J. Ellis, Charles E. Foulds. Targeting kinome reprogramming in ESR1 fusion-driven breast cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5011.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have