Abstract
Abstract We evaluated the novel gamma-lactam-based analogue, KBH-A145, for its anticancer activities. KBH-A145 markedly inhibited histone deacetylase (HDAC) activity in vitro and in vivo to an extent comparable to suberoylanilide hydroxamic acid (SAHA). The proliferation of various types of cancers was significantly suppressed by KBH-A145, among which MDA-MB-231 and MCF, human breast cancer cells and ACHN human renal cancer cells, were most sensitive. This was accompanied by induction of p21WAF1/Cip1 through compromised recruitment of HDAC1, which leads to hyperacetylation of its promoter region and thus arrested both cells in the G2/M phase. Interestingly, this compound induced apoptosis of MDA-MB-231 cells, but not ACHN cells, through cleavage of poly(ADP-ribose) polymerase (PARP). Taken together, these results show that this novel gamma -lactam-based HDAC inhibitor potently inhibits the growth of human breast and renal cancer cells. Thus KBH-A145 is a potential therapeutic agent for the treatment of these types of cancer. Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 4870.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have