Abstract

Abstract Nasopharyngeal carcinoma (NPC) is notorious for its high invasiveness and metastatic ability. In this study, we identified a differential hypermethylated transcription repressor, Homeobox A2 (HOXA2), which helps explain such observation. Aberrant hypermethylation of HOXA2 led to low RNA expression in NPC tumors and cells. Addition of methylation inhibitor 5′Aza restored HOXA2 RNA expression in NPC cells. Methylated HOXA2 promoter reduces the binding affinity of the transcriptional co-activator p300, causing transcriptional repression of HOXA2. In NPC cells, re-expression of ectopic HOXA2 was correlated with decreased invasive ability and reduced metalloproteinase MMP-9 RNA and protein expression. Promoter, ChIP and DNA-pull down assays indicated that HOXA2 competes with the transcription activator, TATA-box binding protein (TBP) for a recognition sequence near the MMP-9 transcription start site, and suppresses MMP-9 transcription. Our results reveal a novel mechanism wherein HOXA2 acts as a suppressor or TBP-antagonist to inhibit MMP-9 expression; while methylation-mediated inactivation of HOXA2 in NPC derepresses MMP-9 production and increases invasion of NPC cells. In NPC plasma samples, increased plasma EBV copy number was correlated with increased in cell-free HOXA2 hypermethylation and elevated MMP-9 levels. Plasma EBV DNA and methylated cell-free HOXA2 may use as biomarkers for monitoring NPC treatment. Citation Format: CHEN-CHING PENG. Aberrantly hypermethylated Homeobox A2 derepresses metalloproteinase-9 through TBP and promotes invasion in nasopharyngeal carcinoma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4772. doi:10.1158/1538-7445.AM2015-4772

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.