Abstract

Introduction: ERK1/2 promote hypertrophy and are protective in the heart, but cause cancer in dividing cells. Raf kinases lie upstream of ERK1/2 and Raf inhibitors (e.g. SB590885 (SB), dabrafenib (Dab)) are in development/use for cancer. Paradoxically, in cancer cells, low concentrations of SB/Dab stimulate (rather than inhibit) ERK1/2. Hypothesis: Our hypothesis is that the heart is primed for Raf paradox signaling. Raf inhibitors have potential to activate ERK1/2 in cardiomyocytes and promote cardiac hypertrophy. Methods: Neonatal rat ventricular cardiomyocytes (NRVMs) were exposed to inhibitors. Dab or SB (3 or 0.5 mg/kg/d) were studied in 12 wk male C57Bl6 mice in vivo in the presence of angiotensin II (AngII, 0.8 mg/kg/d) (n=6-11) using osmotic minipumps. Effects were compared with vehicle controls. Echocardiography was performed (Vevo2100). M-mode images (short axis view) were analyzed; data for each mouse were normalized to the mean of 2 baseline controls. Kinase activities were assessed by immunoblotting or in vitro kinase assays. Results: SB (0.1 μM) or Dab (1 μM) activated ERK1/2 (2.3±0.1 fold; n=4) in NRVMs consistent with Raf paradox signaling. An explanation is that Raf kinases dimerise and submaximal inhibitor concentrations bind one Raf protomer, locking it in an active conformation but activating the partner. In accord with this, 0.1 μM SB increased Raf activities. High SB concentrations (1-10 μM) initially inhibited ERK1/2 in NRVMs, but ERK1/2 were then activated (1 - 24 h) and promoted hypertrophy. In vivo (24 h), Dab and SB activated the ERK1/2 cascade, increasing ANF (17.3 ± 3.1 fold) and BNP (4.5 ± 0.8 fold) mRNA (n=4/5). Over 3 d, Dab and SB increased fractional shortening in the presence of AngII (1.22±0.06; 1.17±0.08), relative to AngII alone (0.95±0.04), increased systolic left ventricular (LV) wall thickness, and reduced systolic LV volume and internal diameter (0.83±0.03 cf 0.97±0.02 for AngII alone). Conclusions: The heart is primed for Raf paradox signaling and Raf inhibitors activate ERK1/2 in cardiomyocytes, promoting hypertrophy. In vivo, Raf inhibitors enhance ERK1/2 signaling and hypertrophy in the context of hypertension, and cardiac hypertrophy may be increased in hypertensive cancer patients receiving Raf inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.