Abstract

Abstract Purpose:The BIM deletion polymorphism is associated with apoptosis resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design:We used EGFR-mutated NSCLC cell lines which were either heterozygous or homozygous for the BIM deletion polymorphism to evaluate the effect of osimertinib in vitro and in vivo. Protein expression was examined by western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results:EGFR-mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR-mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR-T790M mutations. Conclusions:These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR-mutated lung cancers carrying the BIM deletion polymorphism. Note: This abstract was not presented at the meeting. Citation Format: Azusa Tanimoto. Histone deacetylase 3 inhibition overcomes BIM deletion polymorphism-mediated osimertinib resistance in EGFR-mutant lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4681. doi:10.1158/1538-7445.AM2017-4681

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call