Abstract

Abstract The oncogene MYBL2 (encoding B-Myb) is a poor prognostic biomarker in many cancers. B-Myb interacts with the MuvB core of five proteins (LIN9, LIN37, LIN52, LIN53/RBBP4, and LIN54) to form the MMB (Myb-MuvB) complex and promotes expression of late cell cycle genes necessary for progression through mitosis. Both MYBL2 amplification and over-expression are associated with deregulation of the cell cycle and increased cell proliferation. Alternatively, by interacting with E2F4-DP1 and p130/p107, the MuvB core becomes part of the DREAM complex (DP, RB-like, E2F, and MuvB). The DREAM complex opposes MMB by globally repressing cell cycle genes in G0/G1, maintaining the cell in a quiescent state. However, the specific mechanism by which B-Myb alters the cell cycle is not well understood. Herein, we show that B-Myb disrupts the DREAM complex by sequestration and stabilization of LIN52. Analysis of The Cancer Genome Atlas data revealed significant upregulation of DREAM and MMB target genes in breast and ovarian cancer with MYBL2 gain. Given that most of the DREAM target genes are not directly regulated by B-Myb, we investigated the effects of B-Myb on DREAM formation. We found that depletion of B-Myb results in increased DREAM formation in cancer cell lines, while its overexpression inhibits DREAM formation in non-transformed cells. Since the MuvB core subunit LIN52 is essential for assembly of both the DREAM and MMB complexes, we tested whether B-Myb disrupts DREAM by sequestering LIN52. Overexpression of LIN52 did not increase either DREAM or MMB formation, but instead increased the turnover rate of the endogenous LIN52 protein. Interestingly, co-expression of B-Myb increased the expression of both endogenous and overexpressed LIN52 while knockdown of B-Myb had an opposite effect. We found that regulation of LIN52 occurs at the protein level, and that activity of DYRK1A kinase, the enzyme that triggers DREAM complex formation by phosphorylating LIN52, is required for this regulation. These findings are the first to implicate B-Myb in the disassembly of the DREAM complex and offer further mechanistic insights for cancers with MYBL2 amplification. We conclude that B-Myb's oncogenic effects are not only secondary to increased mitotic gene expression by the MMB complex, but also broad disruption of cell cycle gene regulatory programs through compromised DREAM formation. Citation Format: Audra N. Iness, Varsha Ananthapadmanabhan, Fatmata Sesay, Mikhail Dozmorov, Larisa Litovchick. The cell cycle gene regulatory DREAM complex is disrupted by oncogenic B-Myb [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4288.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call