Abstract

Variety of cardioprotective and reparative therapeutic approaches have emerged for the treatment of cardiac remodeling after myocardial infarction (MI). Here we propose a novel mechanism using a neutralizing antibody that target Podoplanin (PDPN), a platelet aggregation-inducing type I transmembrane glycoprotein, expressed on a cohort of myocardial cells that migrate to the infarcted area after MI and contribute significantly to scar formation. The PDPN+ cells were isolated from infarcted hearts two days after MI, using magnetic beads sorting. We tested in vitro the effect of PDPN neutralizing antibody (5μg/ml) in a transwell migration assay and the activation of monocytes co-cultured with PDPN+ cells. The neutralizing antibody decreased significantly PDPN+ cells migration. Monocytes co-cultured with PDPN+ cells produced high levels of IL1α and IL12, whereas treatment of co-cultures with podoplanin neutralizing antibody inhibited IL1α and IL12 production and increased IL9 and IL10 production, suggesting a switch form pro-inflammatory to anti-inlammatory phenotype. To tests the effect of podoplanin neutralizing antibody in vivo, C57BL/6 wild type mice were subjected to experimental MI and anti-PDPN antibody (25μg/ml) was injected i.p. on days 1, 2, 7 and 15 after MI and mice were scarified two months after. At 7 days after MI echocardiography revealed comparable ~30% of ejection fraction (EF) in control and antibody-injected mice. After one month EF% remained unchanged in control group and increased up to 45% in antibody-treated group, suggesting improvement in cardiac function. Histologically, in the control group the ischemic area was composed by fibrotic tissue highly positive for fibronectin and αSMA, whereas in the antibody-treated group revealed large number of survived, as well as proliferating myocytes expressing αSARC-actin and Phospho-H3. Further, there was a significant increase in CD31 positive cells in the infarct border-zone of antibody-treated vs. control hearts, suggesting increased angiogenesis. Our findings suggest that inhibition of PDPN during first two weeks after MI intensely enhances cardiac regeneration and angiogenesis. This may represent a new therapeutic support for the tissue renewal after MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call