Abstract

A decline in the bioavailability of nitric oxide (NO) that causes endothelial dysfunction is a hall-mark of diabetes. The availability of NO to the vasculature is regulated by endothelial nitric oxide synthase (eNOS) activity and the involvement of heat shock protein 90 (Hsp-90) in the regulation of eNOS activity has been demonstrated. Hsp-90 has been shown to interact with upstream kinases (inhibitor kappa B kinases α, β and γ) in non-vascular cells. In this study, we have investigated the interaction of Hsp-90-IKKβ in endothelial cells under conditions of high glucose (HG) as a possible mechanism that diminishes Hsp-90-eNOS interaction, which could contribute to reduced bioavailability of NO. We report for the first time that IKKβ interacts with Hsp-90 and this interaction is augmented by HG in vascular endothelial cells. HG also augments transcriptional (4.02 ± 0.81-folds) and translational (1.97 ± 0.17-fold) expression as well as the catalytic activity of IKKβ (2.04 ± 0.06-folds). Another important and novel finding is that both IKKβ and eNOS could be co-immunoprecipitated with Hsp-90 (Figures A & B ) thus indicating the possible existence of a complex of IKKβ and eNOS interacting with single pool of Hsp-90. Inhibition of Hsp-90 with geldanamycin (2μM) or Radicicol (20μM) mitigated (0.45 ± 0.04 -fold and 0.93 ± 0.16-fold, respectively) HG induced-IKKβ activity (2.5 ± 0.416-fold). Blocking of IKKβ expression by IKK inhibitor II (15μM wedelolactone) or siRNA improved Hsp-90-eNOS interaction and NO production under conditions of HG. These results illuminate a possible mechanism for the declining eNOS activity reported under conditions of HG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call