Abstract

Aging severely limits myocardial regeneration. Delineating the impact of age-associated factors such as short telomeres is critical to enhance the regenerative potential of cardiac progenitor cells (CPCs). We hypothesize that short telomeres induce autophagy and elicit the age-associated change in cardiac progenitor cell fate. We compared mouse strains with different telomere lengths (TL) for phenotypic characteristics of aging and also isolated CPCs from them. Naturally occurring wild mouse strain Mus musculus castaneus (CAST) possessing short telomeres (TL:18Kb) exhibits early cardiac aging with diastolic dysfunction, hypertrophy, fibrosis and increase in senescence markers p53 and p16, as compared to common lab strains FVB (TL:75Kb) and C57 (TL:50Kb). CAST CPCs with short TLs have altered cell fate as characterized by slower proliferation (p<0.01); increased senescence identified by beta-galactosidase activity (p<0.05); increased basal commitment as determined by expression of lineage markers smooth muscle actin, Tie2, and sarcomeric actinin (16.6, 1.7 and 1.75, p<0.05); as well as loss of quiescence marker expression. Consistent findings of altered cell fate are also evident in old CPCs isolated from aged mice with significantly shorter TLs. Cell fate changes occurring downstream from short TL are at least partially p53 dependent, as p53 inhibition rescues the irreversible cell cycle arrest observed in CAST CPCs. Mechanistically, short TLs induce autophagy, a catabolic protein degradation process. Autophagy flux is increased in CAST CPCs as evidenced by increased LC3 (p<0.05), reduced p62 expression (-52%, p<0.05) and increased accumulation of autophagic puncta. Pharmacological inhibition of autophagosome formation, but not autolysosome formation reverses the cell fate to a more youthful phenotype. Overall the data suggests that short TLs activate autophagy to accommodate cell fate changes that tip the equilibrium away from quiescence and proliferation into differentiation and senescence, leading to age-associated exhaustion of CPCs. The study provides the mechanistic basis underlying age-associated cell fate changes that will enable identification of molecular strategies to enhance the therapeutic effects of aged CPCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.