Abstract
Abstract Remarkable progress in cancer immunology has revolutionized cancer therapy. The majority of patients, however, do not respond to immunotherapeutic options, warranting the ongoing search for better strategies. Leveraging the established role of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in autoimmune diseases, we hypothesized that PTPN22 is a novel target for cancer immunotherapy. PTPN22 is a physiologic regulator of T cell receptor (TCR) signaling acting by dephosphorylating activating tyrosine residues in Lck and Zap70. We first confirmed the relevance of PTPN22 expression by exploring its expression in multiple human cancer types using The Cancer Genome Atlas (TCGA). PTPN22 expression positively correlated with T cell and M1 macrophage gene signatures and immune regulatory genes, especially inflamed tumor types. Next, we directly investigated the role of PTPN22 in antitumor immunity by comparing in vivo tumor characteristics in wild-type (WT) and PTPN22 knockout (KO) mice. Consistent with our hypothesis, PTPN22 KO mice resisted MC38 and EG7 tumors significantly compared with WT. Mass cytometry (CyTOF) profiling of the immune tumor microenvironment demonstrated that MC38 tumors in PTPN22 KO mice were infiltrated with greater numbers of T cells, particularly CD8+ T cells expressing granzyme B and PD1. To further delineate the effects of PTPN22 KO on TCR signaling, we established an optimized CyTOF panel of 9 phosphorylation sites involved in the TCR signaling pathway, including two enzymatic substrates of PTPN22 (Lck Y394 and Zap70 Y493) and 15 immune subtyping markers. CyTOF phospho-profiling of CD8 T cells from tumor-bearing mouse spleens and the peripheral blood of immunotherapy-naïve cancer patients showed that the phosphorylated state of Zap70 Y493 correlated strongly with granzyme B expression. Furthermore, phospho-profiling of tumor-infiltrating CD8+ T cells (a measure of T cell activation) revealed the highest TCR-pathway phosphorylation levels in memory CD8+ T cells that express PD1. The difference in phosphorylation levels between WT and PTPN22 KO was most pronounced for Lck Y394. Based on these findings, we then hypothesized that PD1 inhibition will further enhance the antitumor immune responses promoted by the lack of PTPN22. Indeed, PTPN22 KO mice bearing MC38 and EG7 tumors responded more significantly to anti-PD1 therapy when compared with tumor-bearing WT mice. Finally, we treated WT tumor bearing mice with two different small molecule inhibitors of PTPN22, one previously published compound, LTV1, and one novel compound, L1 (discovered through structure based synthesis). While both inhibitors phenocopied the PTPN22 KO mice in resisting MC38 tumor growth, L1 treatment gave an immune profile that resembled what was observed in tumor-bearing PTPN22 KO mice. Taken together, our results demonstrate that PTPN22 is a novel systemic target for augmenting antitumor immunity. Citation Format: Won Jin Ho, Jianping Lin, Ludmila Danilova, Zaw Phyo, Soren Charmsaz, Aditya Mohan, Todd Armstrong, Ben H. Park, Elana J. Fertig, Zhong-Yin Zhang, Elizabeth M. Jaffee. PTPN22 is a systemic target for augmenting antitumor immunity [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3398.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have