Abstract

[BACKGROUND] The angiotensin II type 1 (AT1) receptor in visceral white adipose tissue (WAT) is closely implicated in lipid metabolism and energy homeostasis. Recently, perivascular adipose tissue (PVAT) has been shown to play a crucial role in the development of atherosclerosis; however, the effects of AT1 on PVAT properties and their functional relevance in atherogenesis remain undefined. [METHOD AND RESULT] We examined the fat depot-specific difference of adipose tissue among epididymal WAT, PVAT surrounding thoracic aorta, and interscapular brown adipose tissue (BAT) in 8-week-old apoE deficient (apoE-/-) mice. The expression levels of brown adipocyte marker genes (UCP-1, PGC-1α, Elovl3, PPARα, and Cidea) were significantly higher in BAT and PVAT compared with WAT (P<0.01). White adipocyte marker genes (Igfbp3, DPT, Tcf21, and Hoxc9), which were hardly expressed in BAT, showed a moderate expression levels in PVAT, suggesting that PVAT has a strikingly different phenotype from the classical WAT and BAT. We next examined the properties of PVAT in 8-week-old apoE-/-/AT1 receptor deficient (Agtr1-/-) mice. After 4 weeks of western diet, the expression levels of adipocyte differentiation maker genes (PPARγ, FABP4, c/EBPα) were markedly increased in apoE -/- PVAT (P<0.05), which was completely diminished in apoE-/-/Agtr1 -/- PVAT (P<0.01). To investigate the effect of AT1 on the periaortic adipocyte differentiation, we performed primary culture of preadipocyte from stromal vascular fraction in Agtr1 -/- and Agtr1+/+ PVAT. The mRNA expressions of adipocyte differentiation marker genes (PPARγ, FABP4, and c/EBPα) were time-dependently increased in Agtr1+/+ adipocyte. In contrast, FABP4 and c/EBPα mRNA expressions were markedly inhibited in Agtr1 -/- adipocyte, whereas PPARγ did not differ between the two groups during differentiation, suggesting that AT1 is essentially implicated in the terminal differentiation of periaortic adipocyte. [CONCLUSION] Our findings demonstrate that AT1 regulates the expression levels of late stage of adipocyte-differentiation marker genes in PVAT, suggesting that AT1-mediated modulation of periaortic adipocyte differentiation could be a novel therapeutic target for the prevention of atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call