Abstract
Abstract Cellular senescence is a potent tumor-suppressive program that prevents neoplastic events. Paradoxically, senescent cells develop an inflammatory secretome, termed the senescence-associated secretory phenotype (SASP) and implicated in age-related pathologies including cancer. Here we report that senescent cells actively synthesize and release small extracellular vesicles (sEVs) with a distinctive size distribution. Mechanistically, SIRT1 loss supports accelerated sEV production despite enhanced proteome-wide ubiquitination, a process correlated with ATP6V1A downregulation and defective lysosomal acidification. Senescent stromal cell-derived sEVs carry a special set of cargoes, including small RNA species such as microRNAs (miRNAs) whose spectrum markedly differ from that of proliferating cell-secreted sEVs. Once released, senescent stromal sEVs significantly alter the expression profile of recipient cancer cells and enhance their aggressiveness, specifically drug resistance mediated by expression of ATP binding cassette subfamily B member 4 (ABCB4). Targeting SIRT1 with an agonist SRT2104 prevents development of cancer resistance through restraining sEV production by senescent stromal cells. In clinical oncology, sEVs in peripheral blood of posttreatment cancer patients are readily detectable by routine biotechniques, presenting a novel biomarker to monitor therapeutic efficacy and predict long term outcome. Together, our study identifies a distinct mechanism supporting pathological activities of senescent cells, and provides a novel avenue to circumvent advanced human malignancies by co-targeting cancer cells and their surrounding microenvironment, which contributes to drug resistance via secretion of sEVs from senescent stromal cells. Citation Format: Liu Han, Qilai Long, Eric Lam, Yu Sun. Senescent stromal cells promote cancer resistance via Sirt1 loss-potentiated biogenesis of small extracellular vesicles [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 2969.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.