Abstract

Abstract Background: Patients with glioblastoma multiforme (GBM) have a poor prognosis and few treatment options; hence new treatments are needed. Subcutaneous patient derived xenograft (PDX) models are increasingly used for efficacy studies in drug development. However, orthotopic implantation confers a translational advantage as the cancer develops in a microenvironment more closely mimicking that of the original patient tumor. Also the major impact of the blood brain barrier that must be taking into account when targeting brain tumors as GBM in terms of drug bioavailability is better represented in the orthotopic models. The aim of this study was therefore to develop a panel of orthotopic GBM PDX models for pre-clinical efficacy studies of new drugs. The models were then used to study the efficacy of standard of care such as temozolomide (TMZ) and external radiation therapy (XRT). Methods: Low passage subcutaneous tumors from six different PDX GBM models designated ST108, ST112, ST146, ST545, ST610 and ST2473 were digested and used for intracranial stereotactic injection in nude mice. Tumor take and growth was determined by T2-weighted magnetic resonance imaging (MRI). At confirmed tumor take mice were either treated with TMZ (100mg/kg/day for 5 days) or whole brain XRT (2 Gy/day for 5 days). Control groups receiving vehicle or sham XRT were included depending on treatment regiment. Final endpoint was survival by humane endpoints and tumors were fixed in formalin for histological evaluation. Results: MRI confirmed tumor take in all models within 5 weeks of implantation. The take rate was > 80% across all models. TMZ showed efficacy in the orthotopic ST610 GBM PDX model evaluated by MRI on day 14 (16.2±2.9 mm3 vs. 76.8±13.1 mm3, p=0.016), whereas the ST146 model displayed resistance to TMZ on day 14 (12.7±5.6 mm3 vs. 26.5±11.9 mm3, p=0.26). The median survival was 60 days vs. 14 days in the ST610 model (TMZ vs. vehicle, p=0.0005) and 27 days vs. 13 days in the ST146 model (TMZ vs. vehicle, p=0.007). XRT showed efficacy in the orthotopic ST2473 model. Tumor volume was significantly smaller in treated vs. sham animals 11 days after inclusion (6.9±1.4 mm3 vs. 28.9±3.3 mm3, p=0.001). Also, a survival benefit was observed in XRT treated animals compared to sham. Histology confirmed the presence of orthotopic tumors and typical GBM pathology characteristics such as pseudopalisading tumor cells surrounding necrosis and micro vascular proliferation were identified. Conclusion: Six different orthotopic GBM PDX models were established from low passage subcutaneous PDX models. Models sensitive and resistant to TMZ were identified and histological GBM characteristics were identified. Together, the established panel of orthotopic PDX models can be used as a relevant translational platform for testing of new drugs in a setting that more closely mimics the GBM tumor microenvironment and the impact of the blood brain barrier in patients. Citation Format: Mette M. Jensen, Camilla S. Knudsen, Lotte K. Kristensen, Mette K. Nedergaard, Michael J. Wick, Kyriakos P. Papadopoulos, Anthony W. Tolcher, Andreas Kjaer, Carsten H. Nielsen. A panel of orthotopic glioblastoma multiforme (GBM) patient derived xenograft (PDX) mouse models for efficacy evaluation of drugs [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2805. doi:10.1158/1538-7445.AM2017-2805

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call