Abstract

As one of the leading causes of heart disease, diabetes is a problem which needs a solution. Regulation of glucose uptake and metabolism within skeletal and cardiac muscle has proven capable of altering systemic glucose levels and impacting metabolism to potentially improve patient outcomes. Unfortunately, to date, very few muscle specific metabolic regulators are known which can allow us to achieve blood glucose uptake and metabolism. Sarcolemmal Membrane Associated Protein Isoform 1 (SLMAP1) is a novel protein expressed predominantly within muscle tissue. It has been linked to diabetes through animal models, although its role in metabolism remains to be defined. Here we describe a novel role for SLMAP1 in glucose metabolism within the myocardium. We engineered a transgenic (TG) mouse with cardiac specific expression of SLMAP1. Using neonatal cardiomyocytes (NCMs) collected from these mice we performed glucose uptake assays with 2-deoxy-glucose (2DG), measured glycolytic rate using an Extracellular Flux XF24e Bioanalyzer, and analyzed glucose transporter 4 (GLUT4) trafficking using Western Blots, qPCR, and immunofluorescence imaging. NCMs extracted from TG hearts expressing SLMAP1 displayed increased levels of 2DG uptake (93% ± 25%, n=5, P<0.01), basal glycolysis (glycolysis (92 ± 40%, n=5, P<0.05), and maximal glycolysis (75 ± 31%, n=5, P<0.05) compared with wildtype littermates. Confocal microscopy revealed both increased localization of glucose transporter 4 (GLUT4) at the cell surface as well as an expansion of GLUT4 early endosomes in TG NCMs. The data here indicates SLMAP1 as a novel regulator of glucose uptake and metabolism in the myocardium. The targeted expression of SLMAP1 in a muscle specific manner may enhance systemic glycemic control and serve to limit cardiovascular disease in metabolic disorders such as diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call