Abstract
GLUT1 is essential for human brain development and function, as evidenced by the severe epileptic encephalopathy observed in children with GLUT1 deficiency syndrome resulting from inherited loss-of-function mutations in the gene encoding this facilitative glucose transporter. To further elucidate the pathophysiology of this disorder, the zebrafish orthologue of human GLUT1 was identified, and expression of this gene was abrogated during early embryonic development, resulting in a phenotype of aberrant brain organogenesis consistent with the observed expression of Glut1 in the embryonic tectum and specifically rescued by human GLUT1 mRNA. Affected embryos displayed impaired glucose uptake concomitant with increased neural cell apoptosis and subsequent ventricle enlargement, trigeminal ganglion cell loss, and abnormal hindbrain architecture. Strikingly, inhibiting expression of the zebrafish orthologue of the proapoptotic protein Bad resulted in complete rescue of this phenotype, and this occurred even in the absence of restoration of apparent glucose uptake. Taken together, these studies describe a tractable system for elucidating the cellular and molecular mechanisms of Glut1 deficiency and provide compelling in vivo genetic evidence directly linking nutrient availability and activation of mitochondria-dependent apoptotic mechanisms during embryonic brain development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.