Abstract

Abstract Diffuse gliomas are highly aggressive brain tumors that invariably relapse despite treatment with chemo- and radiotherapy. Treatment with alkylating chemotherapy can drive tumors to develop a hypermutator phenotype. In contrast, the genomic effects of radiation therapy (RT) remain unknown. We analyzed the mutational spectra following treatment with ionizing radiation in sequencing data from 190 paired primary-recurrent gliomas from the Glioma Longitudinal Analysis (GLASS) dataset and 2116 post-treatment metastatic tumors from the Hartwig Medical Foundation. We identified a significant increase in the burden of small deletions following radiation therapy that was independent of other factors and was significantly associated with the clinically applied RT-dosage in Gy (P = 1e-02, multivariable log-linear regression). These novel deletions demonstrated distinct characteristics when compared to pre-existing deletions present prior to RT-treatment and deletions in RT-untreated tumors. Radiation therapy-acquired deletions were characterized by a larger deletion size (GLASS and metastatic cohort, P = 1.2e-02 and P = 8e-11, respectively; Mann-Whitney U test), an increased distance to repetitive DNA elements (P < 2.2e-16, Kolmogorov-Smirnov test) and a reduction in microhomology at breakpoints (P = 3.2e-02, paired Wilcoxon signed-rank test). These observations suggested that canonical non-homologous end joining (c-NHEJ) was the preferred pathway for DNA double strand break repair of RT-induced DNA damage. Furthermore, radiotherapy resulted in frequent chromosomal deletions and significantly increased frequencies of CDKN2A homozygous deletions. Finally, a high burden of RT-associated deletions was associated with worse clinical outcomes (GLASS and metastatic cohort, P < 1e-04 and P = 2.6e-02, respectively; Wald test). Our results collectively suggest that effective repair of RT-induced DNA damage is detrimental to patient survival and that inhibiting c-NHEJ may be a viable strategy for improving the cancer-killing effect of radiotherapy. Taken together, the identified genomic scars as a result of radiation therapy reflect a more aggressive tumor with increased levels of resistance to follow up treatments. Citation Format: Emre Kocakavuk, Kevin J. Anderson, Kevin C. Johnson, Frederick S. Varn, Samirkumar B. Amin, Erik P. Sulman, Floris P. Barthel, Roel G. Verhaak. Radiotherapy is associated with a deletion signature that contributes to poor cancer patient outcomes [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2068.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call