Abstract

Abstract Background: The proliferative and pro-survival signals driven by the insulin-like growth factor (IGF) ligands, IGF-1 and IGF-2, are transmitted through their binding to the IGF-1 receptor (IGF-1R). In addition, IGF-2 promotes proliferation through activation of the insulin receptor variant A (IR-A) that is expressed during embryonic development as well as in many cancers. IGF survival signaling has been implicated in driving resistance to cancer therapies with diverse mechanisms of action, due to cross-talk between cellular signaling networks. Recent studies[1][2] suggest that the combination of IGF-1R signaling inhibitors with CDK4/6 inhibitors can result in enhanced anti-tumor activity. The aim of this study was to explore the potential of the IGF-1/-2 ligand blocking antibody, xentuzumab (BI 836845[3]), to enhance the anti-tumor activity of the CDK4/6 inhibitor abemaciclib, alone or in combination with fulvestrant, in human breast cancer (BC) cell lines. Methods: The anti-proliferative activity of the xentuzumab/abemaciclib combination was evaluated using CellTiter-Glo and propidium iodide staining in a panel of 51 and 20 BC cell lines, respectively. Detailed studies of abemaciclib (+/- fulvestrant), xentuzumab and combinations thereof were performed in MCF7 cells. Cell cycle analysis was done by FACS and BrdU ELISA, cellular signaling was assessed by Western blotting, proliferation was evaluated by Incucyte, CellTiter-Glo and alamarBlue assay. Apoptosis was measured by detection of cleaved PARP and caspase 3. Results: Among a panel of BC cell lines, enhanced anti-proliferative activity of xentuzumab+abemaciclib vs. abemaciclib alone was observed specifically in hormone receptor positive (HR+) cell lines. Combined treatment resulted in more pronounced cell cycle arrest in MCF7 cells, associated with synergistic blockade of IGF survival signaling and suppression of cell cycle genes downstream of CDK4/6. The triple combination with fulvestrant more effectively inhibited tumor cell proliferation than the doublet abemaciclib+fulvestrant, and led to induction of apoptosis. Conclusion: The study results show that addition of the IGF-1/-2 neutralizing antibody xentuzumab to abemaciclib, in the absence or presence of fulvestrant, leads to improved anti-proliferative activity and, in the triple combination, results in cellular death in MCF7 HR+ breast cancer cells. A phase Ib trial evaluating the abemaciclib+xentuzumab combination, including triplets with endocrine therapy in HR+BC patients, is currently ongoing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call